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Preface

During my days as an active Curler I spent quite a time thinking about

what’s happening when a rock slides over the ice or hits another one. And

the longer I thought and the more people I asked the mystery did nothing

but grow.

Some situations I could predict by experience rather fair. Some more

skilled fellows could others. But some outcomes were completely miraculous.

So I started to gather scientific material to cover the topic from a the-

oretical base. Because once you got a model working properly for known

situations, you can start to examine unknown ones and compare the model’s

predictions with reality. This way you get a fundamental understanding of

what’s going on.

At the beginning I considered this to be a kind of brain-jogging, but now

I think the sport has developed so far yet that a team can’t seriously practice

competitive curling without at least noticing some theoretical knowledge e.g.

about psychology but also physics.

Because to throw an impossible matchwinner you first have to recognise

the option, then you need to dare it and surely, you need skill & luck to

succeed.
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Introduction

This paper wants to examine the theoretical basics of running rocks and hits

at first and later apply these laws to real curling situations and get some

useful hints & clues.
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Chapter 1

Rock collission

Yet many brains boiled, there’s poor secure knowledge still. Which direc-

tions take the involved rocks? How much momentum (or energy) is lost?

How is the spin transferred?

Maybe this paper can show some ideas and suggest solutions.

Some things are going to be pretty much same with most of the following

models. They are defined here and will be just referred in the latter. The

variables’ and constants’ naming also is defined here.

The setup

Rock A hits rock B (fig. (1.1)), which equals A in all phys. properties. Both

can be in motion, but usually only A is.

According to the geometric setup we change to a local coordinate-system

with the y-axis pointing from A’s center to B’s. The x-axis is set perpen-

dicular to get a right-handed system. See fig. (1.2).

1.1 Without spin, without loss of energy

This first model is the most primitive and simple one. But it’s a proper

approximation in most cases. Also it’s a good basis for later refinement.
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8 CHAPTER 1. ROCK COLLISSION

T Time of contact

m Mass

~v Speed

~p Momentum ~p = m · ~v
~F Force ~F = m · d

dt~v = d
dt~p

J Moment of inertia

ω Angular speed, spin
~L Angular momentum ~L = J · ~ω
~M Torque ~M = J · d

dt~ω = d
dt
~L = ~R× ~F

~e‖ unit vector in (parallel) direction of hit (see fig. (1.2))

~e⊥ unit vector perpendicular to direction of hit (see fig. (1.2))

F‖ F‖ = ~F · ~e‖ and ~F = F⊥ + F‖
F⊥ F⊥ = ~F · ~e⊥ and ~F = F⊥ + F‖
~v a ~v of rock A

~v b ~v of rock B

~v1 ~v before hit

~v2 ~v after hit

∆x x2 − x1 (difference in time)
a,bδx xb − xa (difference in space)

Table 1.1: Naming of variables (italic) and constants (roman)

1.1.1 General thoughts

Energy must be conserved:

E1 = E2 (1.1)

E :=
∑

all rocks

EiKin + EiRot + EiFric (1.2)

here: 0 = ERot = EFric (1.3)

1.1.2 Parallel component p‖

If neglecting friction rock/ice and rock/rock only two forces appear:

F a
‖ (t) = −F b

‖ (t) (1.4)
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Figure 1.1: The setup: Rock A hits B. Both are identical in mass, size etc.

After the hit i.g. both move.

∫
T

F a
‖ (t) dt = −

∫
T

F b
‖ (t) dt (1.5)

∆pa
‖ = −∆pb

‖ (1.6)

With conservation of energy and assumption of equal masses we get:

va
‖2

= vb
‖ 1

(1.7)

vb
‖ 2

= va
‖1

(1.8)

I.e. the speed-components along the hitting direction just exchange.
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Figure 1.2: The coordinate-system. Positive turn is conterclockwise.



1.2. WITHOUT SPIN, WITH LOSS OF ENERGY 11

1.2 Without spin, with loss of energy

If we look at the rocks hitting each other, what can we see? I mean which

equations do occur? First of all only the components along the hitting-

direction interact at all, the rest remains unchanged. For these parallel

components we state:

EKin1 = EKin2 + U with U = lost energy (1.9)

~Fa + ~Fb + ~ξ = 0 (1.10)

If we assume the lost momentum to be small, e.g. because of a very short

time of contact (� 1) and a not very huge friction rock/ice ( 6� 1), we can

assume ξ ≈ 0 and solve this set of equations.

If we assume equal masses, things end up pretty simple — quite as we

like it! We get

pa
‖2

= pa
‖1

+ pb
‖1
− pb
‖2

(1.11)

pb
‖2

=
sgn(pa

‖1
− pb
‖1

)

2

√(
pa
‖1
− pb
‖1

)2
− 4U +

pa
‖1

+ pb
‖1

2
(1.12)

pa
‖2

=
sgn(pb

‖1
− pa
‖1

)

2

√(
pa
‖1
− pb
‖1

)2
− 4U +

pa
‖1

+ pb
‖1

2
(1.13)

1.2.1 The loss’ amount

How big has the loss of energy U to be, to reduce the remaining path for a

given distance ∆s? It’s got to be the friction’s work along ∆s. If assuming

constant coulomb friction |F | = µmg we get

|F | = µmg (1.14)

W = F · s (1.15)

∆E = W (1.16)

=⇒ U = ∆s · µmg (1.17)
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1.2.2 Resumee

This model workes fine for rather full hits. But as the hits become extreme

thin — the speed-component in hitting direction very small — we get weird

results, e.g.: The hitter changes it’s direction, but the hitting rock remains

unmoved! This tells me to include all p‖, p⊥ and L into the model, but how?
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1.3 With spin, without loss (Try I)

The parallel component works like stated in 1.1.2. Much more interesting

turns out to be the

1.3.1 Perpendicular component p⊥ and spin ω

According to the friction rock/rock in the touching spot a tangential force

appears.

Getting the equations

In the touching spot appear forces affecting A and B, speed and spin. The

relations are (with fig. (A.1)):

F b
⊥ = −F a

⊥ (actio=reactio) (1.18)

Ma = R · ~e‖ × ~F a = −F a
⊥ · R (1.19)

Mb = −R · ~e‖ × ~F b = R · ~e‖ × ~F a = −F a
⊥ · R (1.20)

Integration of the left sides:

F a
⊥(t) →

∫
T

F a
⊥(t) dt = ∆pa

⊥ = m∆va
⊥ (1.21)

F b
⊥(t) →

∫
T

F b
⊥(t) dt = ∆pb

⊥ = m∆vb
⊥ (1.22)

Ma(t) →
∫
T

Ma(t) dt = ∆La = J∆ωa (1.23)

Mb(t) →
∫
T

Mb(t) dt = ∆Lb = J∆ωb (1.24)

Giving:

∆va
⊥ = +

1

m

∫
T

F a
⊥(t) dt (1.25)

∆vb
⊥ = − 1

m

∫
T

F a
⊥(t) dt (1.26)
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∆ωa = −R

J

∫
T

F a
⊥(t) dt (1.27)

∆ωb = −R

J

∫
T

F a
⊥(t) dt (1.28)

So much about how the transferred forces interact. Now let’s say some-

thing about it’s size. Because it’s a friction, it exists only as long, as there is

a difference of the rocks’ surface-speeds. A point on a rotating circle’s edge

has the speed1:

~v eff = ~v + ~ω × ~R(α) (1.29)

Or in our case:

va
⊥

eff = va
⊥ + ωa × R~e‖ = va

⊥ − Rωa (1.30)

vb
⊥

eff
= vb

⊥ + ωb ×−R~e‖ = va
⊥ + Rωb (1.31)

and

a,bδveff
⊥ = vb

⊥
eff − va

⊥
eff (1.32)

The friction stops when:

a,bδveff
⊥ 2 = 0 (1.33)

a,bδveff
⊥ 2 −

a,bδveff
⊥ 1 = −a,bδveff

⊥ 1 (1.34)

a,bδ∆veff
⊥ = −a,bδveff

⊥ 1︸ ︷︷ ︸
=: Veff

(1.35)

Veff = a,bδ∆veff
⊥ = (∆vb

⊥ + R∆ωb)−∆va
⊥ + R∆ωa (1.36)

eq. (1.25) – eq. (1.28) and eq. (1.36) build a solvable set of equations.

But the extremal a,bδ∆veff
⊥ isn’t reached always. Both rocks might already

separate while still rubbing. The maximum is limited by the pressure-force

or ∆pa
‖:

2

1speed (along the path) + rotation
2This linear relation between ∆p‖ and the left side is only valid for pure Coulomb-
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∣∣∣∣∣∣
∫
T

F a
⊥(t) dt

∣∣∣∣∣∣ ≤ µ · |∆pa
‖| (1.41)

otherwise

∫
T

F a
⊥(t) dt = −sgn(Veff) · µ · |∆pa

‖| (1.42)

Solution

eq. (1.30), eq. (1.31) & eq. (1.32):

Veff = −vb
⊥1 − Rωb1 + (va

⊥1 − Rωa1) (1.43)

eq. (1.36):

Veff = −∆va
⊥ + R∆ωa + ∆vb

⊥ + R∆ωb (1.44)

Substituting eq. (1.25) through eq. (1.28):

Veff = −
∫
T

F a
⊥(t) ·

(
1

m
+

R2

J
+

1

m
+

R2

J

)
dt (1.45)

∫
T

F a
⊥(t) dt

︸ ︷︷ ︸
=: X

=
−Veff

1
m + R2

J + 1
m + R2

J

(1.46)

If |X| > µ|∆pa
‖| (1.47)

friction:

F⊥(t) = −sgn(v) · µ · |F‖(t)| (1.37)∫
T

F⊥(t) dt = −sgn(v) · µ ·
∫
T

|F‖(t)|dt (1.38)

no altering sign of F‖(t):∫
T

F⊥(t) dt = −sgn(v) · µ ·

∣∣∣∣∣∣
∫
T

F‖(t) dt

∣∣∣∣∣∣ (1.39)

∫
T

F⊥(t) dt = −sgn(v) · µ · |∆p‖| (1.40)
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then X = −sgn(Veff) · µ · |∆pa
‖| (1.48)

∆va
⊥ = +

1

m
·X (1.49)

∆vb
⊥ = − 1

m
·X (1.50)

∆ωa = −R

J
·X (1.51)

∆ωb = −R

J
·X (1.52)

1.3.2 Check it out

O.k. so far, but what about the conservation of energy? This still should be

ensured, so let’s test it.

The energy consists of two parts, movement and spin and the motion

part can be split into it’s two components.

Beyond that, by using the form z2 = z1 + ∆z for all speeds and taking

their squares we can collect the mixed parts into a remainder ξ

EKin1 + ERot1
!

= EKin2 + ERot2 (1.53)

= EKin1 + ERot1 + ξ(x) (1.54)

This remainder ξ(x) must, for energy might be lost, but not gained, be less

or equal 0.

To test this, we discuss the function ξ(x).

ξ(x) = 2x(va
⊥ − vb

⊥ − Rωa − Rωb) + 2x2 J + mR2

mJ
(1.55)

ξ′′(x) = 4
J + mR2

mJ
(1.56)

ξ(0) = 0 (1.57)

The symbols va
⊥ through ωb, strictly spoken, should be va

⊥1 . . . ωb1. But

for readability reasons in this section we skip the index.

Now let’s check ξ(X) with X from eq. (1.46):

X =
−Veff

1
m + R2

J + 1
m + R2

J
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= −v
a
⊥ − vb

⊥ − R(ωa + ωb)

2J+mR2

mJ

(1.58)

ξ(X) = 2X(va
⊥ − vb

⊥ − R(ωa + ωb)) + 2X2 J + mR2

mJ
(1.59)

= −(va
⊥ − vb

⊥ − R(ωa + ωb))2

J+mR2

mJ

+
1

2
· (va
⊥ − vb

⊥ − R(ωa + ωb))2

J+mR2

mJ

(1.60)

= −1

2
· (va
⊥ − vb

⊥ − R(ωa + ωb))2

J+mR2

mJ

< 0 (1.61)

=⇒ ξ(2 ·X) = 0 (1.62)

=⇒ min
∀x

ξ(x) = ξ(X) (1.63)

That means, as long as our values for x lie between 0 and X, we’ve got

ξ < 0 and we’re on the sunny side of life: We don’t gain energy. Worst

case we loose. I don’t exactly understand where in the above equations

this energy gets lost, but for the first we seem to have a plausible, more

or less simple and handleable model for what happens with take-outs. The

physical effect causing this loss surely is the friction rock/rock and ξ equals

the energy lost here.

1.3.3 Resumee

The model seems to work rather fair and tells that both rocks don’t separate

under 900 in general. Spin has influence on direction of movement and vice

versa.

But still there’s a friction rock/ice that isn’t included in this model, so

it cannot be perfect in all situations.

Improved models are to be developed!
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1.4 With spin and loss (Try I)

The approach 1.2 doesn’t give proper results, so we try a new method. We

assume the rock B not to experience acceleration until the initial friction

FH is overcome. This causes both, a loss of energy as well as as loss of

momentum and spin. Besides we get a natural splitting of the loss of energy

to the components v‖, v⊥ and ω.

For this purpose we need to know the forces during the time of contact

T . To achieve this we need to make some assumptions about the rocks’

elasticity mechanism. Here we assume the rocks to behave like springs and

fulfilling Hook’s law of elasticity. Also we assume the friction rock/rock

to be constant |F⊥| = µ · |F‖|. This way we get to know the forces and

everything’s just fine.

In this section all letters (if not stated differently) mean rock A before

the hit. E.g. x really is xa
1.

1.4.1 Contact behaviour

Hook says:

F = H · x (1.64)

EPot =
1

2
H · x2 (1.65)

H · x = m · a = m
d2x

dt
(1.66)

=⇒ x(t) = A · sin ω̄t (1.67)

with ω̄ =

√
H

m
=
π

T
= const! (1.68)

and A =

√
m

H
v‖

2 =
−v‖
ω̄

=
−v‖T
π

(1.69)

x(t) = −
v‖
ω̄
· sin ω̄t (1.70)

d

dt
x(t) = −v‖ · cos ω̄t (1.71)
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d2

dt2
x(t) = v‖ω̄ sin ω̄t (1.72)

∆v‖ = −v‖
[
cos ω̄t′

]t
0 = −v‖ (cos ω̄t− 1) (1.73)

O.k. so far. But what happens during such a hit? We split the whole

contact 0 ≤ t ≤ T into three periods:

1. Overcome the initial friction t < t1

2. Level the surface speeds t < t0

3. Exchange the rest of the parallel momentum t ≤ T

0

0 t1 T

Rock A

0

0 t1 T

Rock B

Figure 1.3: F‖(t). The parallel forces during the hit. As you see, B ain’t

accelerated until t ≥ t1.

1.4.2 Find t0

t0 is the time, when A’s effective surface speed becomes 0 (=B’s).

~v eff
2

!
= 0 (1.74)

v⊥2 − Rω2 = 0 (1.75)

v⊥ + ∆v⊥ − R(ω + ∆ω) = 0 (1.76)

(1.77)

with eq. (1.25) & eq. (1.27):

∆ω = ∆v⊥
−mR

J
(1.78)

∆v⊥ =
−~v eff

J+mR2

J

(1.79)
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F⊥ = −sgn(~v eff) · µ · |F‖| (1.80)

=⇒ ∆v⊥ = −sgn(~v eff) · µ ·
∣∣∣−v‖ · (cos ω̄t0 − 1)

∣∣∣ (1.81)

=⇒
−~v eff 1

J+mR2

J

−sgn(~v eff)µ|v‖|
= | cos ω̄t0 − 1︸ ︷︷ ︸

≤0∀t0

| (1.82)

−

∣∣∣∣∣∣∣
~v eff

J+mR2

J

v‖µ

∣∣∣∣∣∣∣+ 1 = cos ω̄t0 (1.83)

1.4.3 Find t1

t1 is the time, when the Hook-force equals the friction.

F‖
2 + F⊥

2 = F 2
H (1.84)

F‖
2 + µ2F‖

2 = F 2
H (1.85)

F‖ =
FH√
1 + µ2

(1.86)

mv‖ω̄ sin ω̄t1 =
FH√
1 + µ2

(1.87)

sin ω̄t1 =
FH

mv‖ω̄
√

1 + µ2
(1.88)

Result

The lost momentum is:

∆~v = −v‖
(√

1− sin2 ω̄t1 − 1

)(−sgn(~v eff) · µ
−1

)
(1.89)

If ~v eff becomes zero before the friction ends we need to find the friction

parallel to ~e‖ only, but include the lost momentum in ~e⊥ direction as well.
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if t0 < t1 ⇐⇒ sin ω̄t0 < sin ω̄t1 (1.90)

sin ω̄t1 =
FH

mv‖ω̄ · 1
(1.91)

Lost momentum:

⊥ : −sgn(~v eff)µ ·
∣∣∣−v‖ · (cos ω̄t0 − 1)

∣∣∣ (1.92)

‖ : v‖ · (
√

1− sin2 ω̄t1 − 1) (1.93)

After applying the above loss of momentum to the hitting rock and a

loss of spin of

∆ω = −∆v⊥
mR

J
(1.94)

we can continue with a normal hit, e.g. like described in 1.3.

1.4.4 Loss of energy & FH

The energy stored in a spring is

E =
1

2
Hx2 (1.95)

=
1

2
ω̄2 ·m · x2 (1.96)

with x = −v‖/ω̄ · sin ω̄tH (1.97)

and FH = mv‖ω̄ · sin ω̄tH (1.98)

E =
1

2
ω̄2 ·m · (−v‖/ω̄ · sin ω̄tH)2 (1.99)

E =
1

2

F 2
H

mω̄2
(1.100)

=⇒ FH = ω̄
√

2mE = const! (1.101)

That tells us for a given loss of energy we’ll get a constant initial friction.

(Which, indeed, is a very nice result.)
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1.4.5 Resumee

This model depends on Coulomb-friction rock/rock and a constant friction

rock/ice for non-moving rocks. This friction can be very big, about 104 N!

The results presented by this model seem quite sensible. The only prob-

lem remaining is what happens if hitting a freeze? Do we have to overcome

the friction two times? If yes this model works fine.



Chapter 2

Rock trajectory

2.1 Applying the ’Denny’ model

Mark Denny published a model in [Den98], see B.1. To apply it for simula-

tion we need to

• compute the ice properties from the draw-to-tee time and curl.

• transform from t0 = 0 to t0 > 0

• transform the equations from rock-coordinates to world-coordinates

• compute the initial speed of a rock from the hog-to-hog time and y0

2.1.1 Basic equations

After substituting eq. (B.5) the basic equations are:

x(t) = −sgn(ω0)
b g µ t3 (3 g µ t− 4 v0)

48 εR
(2.1)

x′(t) = −sgn(ω0)
b g µ t2 (g µ t− v0)

4 εR
(2.2)

x′′(t) = −sgn(ω0)
b g µ t (3 g µ t− 2 v0)

4 εR
(2.3)

y(t) = − t (g µ t− 2 v0)

2
(2.4)

y′(t) = − (g µ t− v0) (2.5)

y′′(t) = −g µ (2.6)

23
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α(t) =
ω0 ε

(
g µ t

(
−g µ t−v0

v0

) 1
ε − v0

(
−g µ t−v0

v0

) 1
ε + v0

)
(ε+ 1) g µ

(2.7)

α′(t) = ω0

(
−g µ t− v0

v0

) 1
ε

(2.8)

α′′(t) =
ω0 g µ

(
−g µ t−v0

v0

) 1
ε

ε (g µ t− v0)
(2.9)

2.1.2 The ice-properties µ and b

To calculate µ and b from the time T and curl B of a draw-to-tee we set up

the equations

x(T ) = B (curl) (2.10)

x′(T ) = 0 (2.11)

y(T ) = D (distance hog to tee) (2.12)

y′(T ) = 0 (2.13)

Solving the set of this 4 equations leads to

b = −12B εR

D2
(2.14)

µ =
2D

g T 2
(2.15)

v0 =
2D

T
(2.16)

2.1.3 Some initial speeds

How hard do we have to throw a rock, that will take 12 seconds hog to hog?

To calculate v0 at the far hog we don’t use the time hog-to-tee for not

every rock reaches the tee-line. Here the time hog-to-hog (TH) is better.

y(TH) = H (dist. hog-to-hog) (2.17)

⇒ v0 =
g µT 2

H + 2H

2TH
(2.18)
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If we don’t want v1 at the far hog but at any given distance y1, the

following equations apply:

y(t) = y1 (2.19)

y′(t) = v1 (2.20)

v1 = −g µT
2 − 2 y1

2T
(2.21)

v0 =
g µT 2 + 2 y1

2T
(2.22)

eq. (??) + eq. (??):

H = v0TH − TH
µg

2
+ THt0µg (2.23)

=⇒ t0 =
H − v0TH + T 2

H
µg
2

THµg
(2.24)

Substituting this into eq. (??) and solving for v0 gives

=⇒ v0 =
1

2
·

√(
µgTH + 2

H

TH

)2

+ 4µgH − 8µgy0 (2.25)

If you prefer using Y0 measured from the tee, use

=⇒ v0 =
1

2
·

√(
µgTH + 2

H

TH

)2

+ 4µgH − 8µg(far-hog-to-tee− Y0)(2.26)

2.1.4 Coordinate transformation

Because of Denny assumes the rock to start at (0, 0)T with v0 pointing along

the ŷ-axis, we need a rotation and shift to get the general equations.

(
x

y

)
:=

~vreal

|~vreal|
(2.27)

The required transformation is:

(
y x

x −y

)
(2.28)
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Applying this trafo to e.g.
(a
b

)
results in(

y x

x −y

)
·
(
a

b

)
=

(
ay + bx

ax− by

)
(2.29)

where a and b are polynomes of max. fourth degree:

a =: At4 +Bt3 + Ct2 +Dt+ E (2.30)

b =: αt4 + βt3 + γt2 + δt+ φ (2.31)

This leads to a x-component of

y(At4 +Bt3 + Ct2 +Dt+ E) +

x(αt4 + βt3 + γt2 + δt+ φ) (2.32)

= (Ay + αx)t4 + . . .+ (Ey + φx) (2.33)

and a y-component of

x(At4 +Bt3 + Ct2 +Dt+ E) +

−y(αt4 + βt3 + γt2 + δt+ φ) (2.34)

= (Ax− αy)t4 + . . .+ (Ex− φy) (2.35)

Now just the shift is missing.
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Some physical/math. Basics

A.1 Rotation equations using cross-products

velocity: ~v = ~ω × ~R (A.1)

torque: ~M = ~R× ~F (A.2)

angular mom.: ~L = ~R× ~p = J~ω (A.3)

energy: ERot =
1

2
~L · ~ω =

|~L|2

2J
(A.4)

A.2 Force-splitting

See fig. (A.1).

A.3 Time-distance of two spheres on straight paths

Having one object’s center at ~a with speed ~va, the other at ~b with speed ~vb,

we introduce

~x := ~b− ~a (A.5)

~v := ~vb − ~aa (A.6)

Now we need the time until the centers’ distance equals the two radii:

|~x+ t · ~v| = (r + r) (A.7)

27
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~R

Figure A.1: Force-splitting: The force at the edge ~F1 can, after adding ~F2,3

be split into a central force ~F3 and a torque-causing force-pair ~F1,2. The

result is a force ~F2 in the center of mass and a torque ~F1 × ~R. See [Gre85,

P. 142f], [GHS95, P. 34fff].

(~x+ t · ~v) · (~x+ t · ~v) = (r + r)2 (A.8)

~x~x+ 2t~v~x+ t2~v~v − (r + r)2 = 0 (A.9)

t1,2 =
−~v~x±

√
(~v~x)2 − |~v|2 · (|~x|2 − (r + r)2)

|~v|2
(A.10)

In our case the solution is the smaller (earlier) result:

t =
−~v~x−

√
(~v~x)2 − |~v|2 · (|~x|2 − (r + r)2)

|~v|2
(A.11)

If ~v~x = 0 the rocks pass each other (or don’t move at all), for ~v~x > 0

they separate.
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Figure A.2: When do 2 objects hit? The setup.



Appendix B

Ice models

B.1 The ’Denny’ model

Mark Denny published a model in [Den98]. It’s quite simple and provides

polynomes of fourth degree to describe the rock’s motion along the sheet.

-

6

*

K

6

ûT

û ~w

~v

Φ

~R(Φ)

Figure B.1: The running band of radius R is the surface of contact between

rock and ice. Here the velocity components, relative to the ice, of a point

on the running band are shown. v is the CM velocity, and w is the angular

component at radius R. The unit vectors (uT , u) coincide with (ux, uy) at

time t = 0. In this case the rock is curling in a counterclockwise sense (so

angular velocity unit vector = uz).

x(t) ≈ − bv2
0

4εRτ

(
t3

3
− t4

4τ

)
(B.1)

30



B.1. THE ’DENNY’ MODEL 31
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v0 = 2.7mathrmm/s
v0 = 2.5mathrmm/s
v0 = 2.3mathrmm/s

Figure B.2: Approximate curling rock trajectories, calculated from eq. (B.1),

eq. (B.2) and eq. (B.4) for three values of initial velocity v0. The other

parameters are: µ = 0.0127, bLR = 0.003, ε = 2.63, R = 0.065.

y(t) ≈ v0

(
t− t2

2τ

)
(B.2)

ω(t) ≈ ω0

(
1− t

τ

)1/ε

(B.3)

α(t) ≈
∫ t

0
ω(t) dt = −

ω0 ε

(
τ
(
τ−t
τ

) 1
ε − t

(
τ−t
τ

) 1
ε − τ

)
ε+ 1

(B.4)
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t [s] time

x [m] curl

y [m] distance along the track

b [1] parameter for the curl’s magnitude

ε [1] parameter I
mR2

τ [s] total time until v = 0

R [m] radius of the touching area rock/ice ≈ 6.3e-2

µ [1] friction coefficient rock/ice

I moment of inertia (z-direction)

g [N/kg] 9.81 gravitation

The final properties are:

τ =
v0

µg
(B.5)

x(τ) ≈ −bLR

12ε

y2(τ)

R
(B.6)

y(τ) ≈ v2
0

2µg
(B.7)
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B.2 The ’Shegelski et al.’ model

This model is much more complicated. A sketch is published in [SNW96]:

. . .

B.2.1 Equations of motion of a curling rock

We next give the equations that determine the motion of the curling rock

down the pebbled ice surface. This is a straightforward exercise in deter-

mining the net force and torque exerted by the ice on the rock.

We choose the coordinate axes as follows. The +y axis is in the direction

of the initial velocity of the rock, and the +x axis is perpendicular to the

initial velocity and in the direction in which the rock is expected to curl.

In obtaining the results given in the next section, we also used a +y′ axis,

which is in the direction of the instantaneous velocity of the rock, as well as

a +x′ axis.

We assume that both wet and dry frictional forces exerted on a small

section of the annulus of the rock are in the direction opposite to the velocity

of the point relative to the ice. The magnitude of the dry friction is

∆F d = µMg

(
∆Θ

2π

)
(B.8)

where µ is the coefficient of kinetic friction.1 We take the magnitude of

the wet friction increase with velocity, in analogy with increased drag on an

object moving in a fluid, and write

∆Fw = k [u(Θ)]Φ (B.9)

where k and Φ are parameters to be discussed below, and u(Θ) is the net

speed, relative to the ice, of the portion of the contact annulus at angle Θ,

as shown in fig. (B.3).

To minimize the numerical analysis, instead of integrating over the en-

tire area of the annulus, we break each semicircle into an outer and inner

semicircle. By considering each quadrant of the rock seperately, the fol-

lowing equations for the x and y components of the force on the rock are

readily obtained. We first give the equations, then complete our definitions

of symbols used.

1In the case of a curling rock, the nonuniformity in the normal force around the rock

is neglegible in our model; the nonuniformity is a consequence of the acceleration due to

friction.
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-

6

6
�

]M

N

ŷ ~vrot

~vx

~vy

~u

−x̂Θ

η
~F

Figure B.3: The contributions ~vy, ~vx and ~vrot (with ~vrot = ~rω) to the net

velocity ~u ≡ ~u(Θ), relative to the ice, of a portion of the contact annulus

located at the angle Θ relative to the x-axis. The figure shown is for a

portion located in the first quadrant; similar figures are readily constructed

for the other three quadrants. The angle Θ in each case is from the x-axis

toward the y-axis. Note that the force ~F exerted on the portion is in the

opposite direction to ~u. The angle η appears in the equations explicitely as

the arctan of the ratio of the x and y components of ~u.

The x-component of dry friction is:

F dx = −fdL
µMg

2π

π/2∫
0

dΘ

{
sin

(
tan−1

[
r2ω sin Θ + vx
vy + r2ω cos Θ

])
+ sin

(
tan−1

[
r2ω sin Θ + vx
vy − r2ω cos Θ

])}

+fdT
µMg

2π

π/2∫
0

dΘ

{
sin

(
tan−1

[
r1ω sin Θ− vx
vy + r1ω cos Θ

])
+ sin

(
tan−1

[
r1ω sin Θ− vx
vy − r1ω cos Θ

])}
(B.10)

The x-component of wet friction is:

Fwx = −kfwL

π/2∫
0

dΘ
[
(r1ω sin Θ + vx)2 + (vy + r1ω cos Θ)2

]Φ/2
sin

(
tan−1

[
r1ω sin Θ + vx
vy + r1ω cos Θ

])

−kfwL

π/2∫
0

dΘ
[
(r1ω sin Θ + vx)2 + (vy − r1ω cos Θ)2

]Φ/2
sin

(
tan−1

[
r1ω sin Θ + vx
vy − r1ω cos Θ

])
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+kfwT

π/2∫
0

dΘ
[
(r2ω sin Θ− vx)2 + (vy + r2ω cos Θ)2

]Φ/2
sin

(
tan−1

[
r2ω sin Θ− vx
vy + r2ω cos Θ

])

+kfwT

π/2∫
0

dΘ
[
(r2ω sin Θ− vx)2 + (vy − r2ω cos Θ)2

]Φ/2
sin

(
tan−1

[
r2ω sin Θ− vx
vy − r2ω cos Θ

])
(B.11)

Similar equations hold for the y-component of the force.

The following equations give the torque due to dry and wet friction:

τd = −r2
µMg

2π

π/2∫
0

dΘfdL sin

(
Θ +

π

2
− tan−1

[
r2ω sin Θ + vx
vy + r2ω cos Θ

])

+r2
µMg

2π

π/2∫
0

dΘfdL sin

(
Θ +

π

2
+ tan−1

[
r2ω sin Θ + vx
vy − r2ω cos Θ

])

−r1
µMg

2π

π/2∫
0

dΘfdT sin

(
π

2
−Θ + tan−1

[
r1ω sin Θ− vx
vy + r1ω cos Θ

])

+r1
µMg

2π

π/2∫
0

dΘfdT sin

(
π

2
−Θ− tan−1

[
r1ω sin Θ− vx
vy − r1ω cos Θ

])
(B.12)

τw = −r1kf
w
L

π/2∫
0

dΘ
[
(r1ω sin Θ + vx)2 + (vy + r1ω cos Θ)2

]Φ/2
sin

(
Θ +

π

2
− tan−1

[
r1ω sin Θ + vx
vy + r1ω cos Θ

])

+r1kf
w
L

π/2∫
0

dΘ
[
(r1ω sin Θ + vx)2 + (vy − r1ω cos Θ)2

]Φ/2
sin

(
Θ +

π

2
+ tan−1

[
r1ω sin Θ + vx
vy − r1ω cos Θ

])

−r2kf
w
T

π/2∫
0

dΘ
[
(r2ω sin Θ− vx)2 + (vy + r2ω cos Θ)2

]Φ/2
sin

(
π

2
−Θ + tan−1

[
r2ω sin Θ− vx
vy + r2ω cos Θ

])

+r2kf
w
T

π/2∫
0

dΘ
[
(r2ω sin Θ− vx)2 + (vy − r2ω cos Θ)2

]Φ/2
sin

(
π

2
−Θ− tan−1

[
r2ω sin Θ− vx
vy − r2ω cos Θ

])
(B.13)

In these equations fdL is the effective fraction of the leading semicircle

of the rock which experiences dry friction, and similarly for fdT , etc., r1 and

r2 are the effective values of the radii of the inner and outer portions of the
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semicircle, respectively; vx and vy are the components of the velocity of the

centre of mass of the rock; Θ in each quadrant is measured from the x-axis

toward the y-axis, as shown in fig. (B.3); and ω is the instantaneous angular

speed of the rock.

Fig. (B.3) is presented to assist in understanding and appreciating the

significance of the above equations. The figure shows the contributions ~vy,

~vx and ~vrot (with ~vrot = ~rω) to the net velocity ~u ≡ ~u(Θ), relative to the

ice, of a portion of the contact annulus located at the angle Θ; note that

~u = ~vy + ~vx + ~vrot, and recall that the velocity of the centre of mass of the

rock relative to the ice is ~v = ~vy + ~vx. Figure fig. (B.3) also shows that the

force ~F exerted on that portion the direction opposite to ~u. Similar figures

are readily structured for the other three quadrants of the rock. We p???

the equations above with each of the four quadrants exp??? displayed so

that the reader may easily recognize the ???-bution from the four quadrants

and further appreciate asymmetries that arise, which are responsible for the

curl of the rock.

The x and y components of the velocity of the rock at any time t are read-

ily obtained numerically from the ??? equations along with ~F = Md~v/dt,

and initial conditions. The location of the rock is then obtained by using

x(t) = x0 +

t∫
0

dt′vx(t′) (B.14)

and

y(t) = y0 +

t∫
0

dt′vy(t
′) (B.15)

The angular speed ω is given by

ω(t) = ω0 +

t∫
0

dt′α(t′) (B.16)

where τ = MR2α/2 determines the time development of the angular accel-

eration of the rock.

In the first phase of the rock’s motion, we put fdL = fwT = 1, fdT = fwL = 0

and r1 = r2 = r.

In the middle phase of the rock’s motion, we put fdL = fwT = fdT = fwL =

1/2 and r1 = r −∆r/2, and r2 = r + ∆r/2.
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In the final phase, we have r1 = r2 = r, fd = 0, and fw = 1 for

0 ≤ Θ′ ≤ Θ′0, and fd = 1, and fw = 0 for Θ′0 ≤ Θ′ ≤ 2π, where Θ′ is

measured counterclockwise from the −x′ direction, and Θ′0 gives the point

on the rock where the velocity relative to the ice is radially outwarded from

the centre of the rock.

We do not have a first-priciples derivation of the function that should be

used to describe the transition between the first and middle, and middle and

last phases of motion. Instead we use a smooth function for the transition

in fdL that has the following features: fdL ≈ 1 for v ≥ 1.5 m s−1; fdL ≈ 1/2

for 1.5 m s−1 ≥ v ≥ 1.0 m s−1; and fdL ≈ 0 for 1.0 m s−1 ≥ v ≥ 0 m s−1. The

transition from one value to the next is smooth and occurs within a full

width of about 0.2 m s−1. Small variations in the functional form of fdL give

only very slight changes in the results presented in the next section.

. . .
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B.3 My own considerations

B.3.1 Introduction

The rocks are not running straight in general: Besides slowing down they

curl to one side. So the force ~F caused by friction rock/ice is not parallel

to the speed ~v. Neihter it is constant. The most general form is:

~F = ~F (~v, ω, ~x, α) (B.17)

If ice and rock are homogenous and free of debri it simplifies a little bit:

~F = ~F (~v, ω) (B.18)

The components of ~F are:

Fy ‖ ~v force parallel running direction

Fx ⊥ ~v force perpendicular to running direction
(B.19)

B.3.2 Parameters to describe the friction

Statements:

Fx ≈ 0 for ω � ω0(≈ 2.5π
25s ) Straight running spinners

Fx ≈ 0 for ω ≈ 0 Straight if without handle

Fx max for ω = ω0 max. curl for a smooth handle

Fy � for ω � ω0 few friction for spinners

Fy � for ω ≈ 0 much friction if without handle

(B.20)

Practicable parameters to describe the ice might be:

• time hog to tee for a draw-to-tee,

• curl for a draw-to-tee,

• curl for a take-out of defined speed (e.g. 9s hog-to-tee),

• do the rocks slow down quick once they started to or don’t they.

B.3.3 Base for ~F

The area of contact rock/ice is a fine ring on the rock’s bottom. ~F is the

sum of the forces affecting this ring. For a given spot (x, y)T on this ring

this force is in general:
~f = ~f(~v, ω, x, y) (B.21)
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Then ~F is:

~F =

R+∆R∫
R

2π∫
0

~f(~v, ω, x, y) dϕdr (B.22)
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